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Abstract

A finite-valued force multipole expansion is developed to describe the dynamics of spherical particles
sedimenting in Stokes flow. The lowest level of the method is a simple force coupling procedure to represent
the dynamic coupling between the particle phase and the fluid phase. The length scale associated with the
finite force envelope provides an additional parameter that when matched to the particle size gives con-
sistent results for the particle velocity. Sedimentation velocities for particles in a cubic lattice are predicted
with good accuracy up to volume fractions of 20% by this approximate method. The calculated kinetic
energy dissipation by viscosity is correctly balanced with the release of potential energy. As a full expansion
procedure it is possible to calculate exactly the flow surrounding the particles, using standard numerical
procedures such as fast Fourier transforms in periodic domains. Examples for the settling of particle pairs
and random suspension are also given. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The sedimentation of spherical particles settling in a liquid is an important and common
problem in the handling of materials in manufacturing or for particle separation in many
chemical, biomedical or biological systems. It has also become a canonical problem in the study of
dispersed two-phase flow, providing a valuable test for simulation methods or theoretical models.
In a previous paper (Maxey et al., 1997) we introduced a specific model for the motion of particle-
laden flows where the equations of fluid motion are applied to the whole region, including the
volume nominally occupied by the particles. The equations of motion for incompressible flow in
this force-coupling model are:
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p<%+u-Vu> = —Vp+ uViu+1f(x,1), (1)
V-u=0, (2)
ﬁxozﬁéﬁﬂﬂx—Ymm) (3)

n=1

The velocity V(")(t) of the particle centered at Y(">(t) is determined by a local, spatial average of
the fluid velocity u(x,?) as

V(1) = /u(x,t)A(x —Y" () d’x. (4)

The presence of the particles and their action on the fluid motion is then represented by a finite,
localized body force distribution (3) where the force F™ of the nth particle acting on the fluid is
distributed over a spherically symmetric region determined by the envelope function A(x). The
purpose of this paper is to develop this model in the context of Stokes flow and to demonstrate the
connections between this approach and existing methods. We extend, and correct, results initially
given by Maxey and Patel (1997).

Significant progress has been made towards understanding and representing the gravitational
settling of small particles for which the particle Reynolds number is very low and the fluid motion
around the particles is a Stokes flow. To determine the motion of a large number of rigid spherical
particles in a Stokes flow one needs to determine the fluid velocity u(x, ¢) from

0= —Vp+ uVu, (5)

V-u=0, (6)

where p and p are the fluid pressure and viscosity together with the no-slip boundary conditions
on each particle surface

U=V+Ox(x-Y). (7)

Here V, Q and Y are the velocity, angular velocity and position vectors for the particle. This and
an appropriate condition for the far field will specify the fluid motion outside the particles. An
alternative is to specify a distribution of force singularities in the flow centered on each particle
with the strength of each singularity chosen so as to match (7) at least approximately. This is
equivalent to expressing the flow as a multipole expansion with u being a linear combination of
Stokeslets, stresslets, rotlets, and so on for each particle, see for example Happel and Brenner
(1973), Mazur and Van Saarloos (1982) and Kim and Karrila (1991).

Multipole expansions have, in one form or another, become a standard technique for the
analysis of Stokes suspensions. Specific applications to issues of particle sedimentation or self-
diffusion are given amongst others by Ladd (1988, 1993), Brady and Bossis (1988), Mo and
Sangani (1994), Sangani and Mo (1996), Cichoki and Hinsen (1995) as well as the survey paper by
Weinbaum et al. (1990). The main differences between these approaches lie in the method used to
assign the multipole strengths either in terms of force densities on the particle surface or the
boundary conditions (7), as well as the inclusion of lubrication forces and the order of the
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multipole expansion. At the first level of approximation a multipole expansion for Stokes flow
gives the point-particle representation

N
0=-Vp+uVu+) F5(x—-Y") (8)

n=1

for N particles each exerting a force F™ on the surrounding fluid.

A similar point-particle representation has been used too for the study of dispersed two-phase
flow at finite Reynolds numbers. Squires and Eaton (1990) and Elghobashi and Truesdell (1993)
have both developed numerical simulations for solid spherical particles dispersed in a turbulent
gas flow to determine the extent to which the turbulence may be modified by the particle phase.
The particles considered are small and either similar in size or smaller than the Kolmogorov
length scale of the ambient turbulent flow. Several interesting processes have been observed re-
garding the damping of the turbulence by the particles and the nonuniform distribution of the
particle phase.

The implementation of either a multipole expansion based on a distribution of force singu-
larities, or a simpler point-force representation as in (8) presents several difficulties for general
numerical simulations as pointed out by Maxey et al. (1997). The linearity of Stokes flow allows
one to manipulate directly the flow fields generated by each force singularity term. However in a
general context at finite Reynolds numbers this is not possible and the full equations of fluid
motion must be solved numerically. The effect of a point singularity such as a Dirac delta function
term in (8) cannot be represented accurately in a numerical scheme, be it finite difference or
pseudo-spectral. Even if the particle position coincides with a computational grid point the re-
sulting flow will not be resolved numerically and at best the results will depend on the numerical
procedures used. In this paper we present an alternative procedure where a term such as the Dirac
delta function é(x — Y) is replaced by a finite, smoothly varying function 4(x — Y), such as the
Gaussian function

A(x) = (216%) 7 exp(—x2/26%). (9)

This has the same overall effect of introducing a localized force representation. The length scale o
provides an extra parameter that may be adjusted both to ensure numerical resolution and to
reflect in some way the finite size of the particle. The physical equations governing the flow are
then well posed and the results should not depend on specific numerical algorithms.

A second issue that must be addressed in the simulation of sedimenting particles, using the
point-particle approximation, is the particle tracking or computation of the particle motion from
the local flow conditions. An individual particle will induce an infinite fluid velocity at its center,
this arises from the Stokeslet singularity associated with the force the particle exerts on the sur-
rounding fluid. Clearly this is not a physical effect and comes from using the fluid velocity at a
point within the volume occupied by the particle. In a multipole expansion this is dealt with by
summing the fluid velocity contributions from the particles excluding the particle in question. This
procedure however cannot be adopted for finite Reynolds number simulations where it is not
possible to separate the contributions from different particles. The flows generated with the lo-
calized force representations (9) are however finite at all points and this apparent difficulty with
self-induced particle velocities can in fact be used to advantage as will be demonstrated later.
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In the following sections of this paper we summarize the multipole expansion for Stokes flow
and derive the corresponding results for an isolated particle using the localized, finite represen-
tation based on A(x). The expansion is described first as an exact calculation method where
higher-order multipoles are included as necessary to ensure the boundary conditions are satisfied.
A second approach is to retain only the leading-order force monopole for each particle and obtain
the approximate force-coupling model for the flow. This too is described and the options for
selecting the length scale associated with 4(x) are discussed together with the degree that the flow
outside the particle is accurately represented. In Section 5 specific examples are given for a simple
cubic lattice of particles sedimenting under gravity, for the motion of a pair of particles and for a
random suspension.

2. Force multipole expansions

We begin this section with a summary of the standard multipole expansion for Stokes flow as
given by Saffman (1973). While there are numerous, similar versions of the multipole expansion
Saffman’s description provides a close comparison with the proposed finite force multipole. In
both, a fluid velocity field is determined at all points, either in the fluid itself or in the volume
occupied by the particle.

2.1. Singular force multipoles

The standard multipole distribution of point forces for a collection of N particles centered at
Y™, where the index n ranges from 1 to N, results in an equation for the fluid velocity

0 = —0p/x; + uVu;

N
+ > {F8(x = Y) + FVo/ax;s(x — YO + Fo? faxdd(x — Y) + ) (10)
n=1
The flow is also incompressible at all points
V-u=0. (11)
The coefficients F,-<"), Ej-”), Fiﬁz) for example are the force monopole, force dipole, and force

quadrupole moments. The first two are related to the fluid force and fluid torque on the nth
particle, with the resultant fluid force equal to —F," and the torque equal to —e,-_,k}f}sf”). These and
the higher-order multipole coefficients are chosen to ensure that to the required level of ap-
proximation the boundary conditions (7) are satisfied on the surface of each particle. The
equations for Stokes flow are linear so the fluid velocity u(x) may be obtained by a linear su-
perposition of the flows induced by the individual force multipole terms.

The key elements are the fundamental solution for the Laplace equation

Vg = 3(x), (12)
which written with » = x| is
g(x) = —1/4nr (13)
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and the Oseen operator T;; for the Stokes flow induced by a single point force at the origin

Ui = ZjEv <14)
1
T; :%(5z//7+xix//r3)- (15)

From these the flow induced by a high-order multipole is obtained by differentiation. Saffman
(1973) states a number of results of this form in the notation of generalized functions, consistent
with the use of the Fourier transform method. Some caution is necessary in manipulating these
results. A generalized function f'is defined (see for example Griffel, 1981 or Lighthill, 1958) as a
linear functional that when applied to a smoothly varying test function ¢(x) gives a simple nu-
merical value, denoted by (f, ¢). For an ordinary function f(x) this is defined as

06) = [ Fx0900) &, (16)
For ordinary functions also the differentiation rule is easily shown to be

<6f/axi; ¢> = _<f7 ad)/axi) (17)

and this becomes a definition for the generalized functions as a whole. Although the fundamental
solution g(x) of (13) and the Oseen tensor are singular at the origin these singularities are in-
tegrable and the inter{pretation of (16) presents no difficulty. The same is true of the flow induced
by the force dipole E-j") which is given by the derivative of the Oseen tensor. The response to the
force quadrupole however is strictly only a generalized function. For example the degenerate force
quadrupole, where Fj; equals H;0, induces a flow specified by V27;; and this is
u»—LP{d-/lﬁ—3x»x-/r5}H»—£5(x)H» (18)
T 4n 1 ij i) 173 1 i
The notation P{f(x)} is introduced here to denote the Principal Value or finite part of this
function. The evaluation of the integral (16) for the function P{f} is defined as

(PLf}. ) = / Fx)Bx)dx, (19)

where the volume D includes all points except for an arbitrarily small sphere centered on the
origin where f'is singular. The flow u; given by (18) is formally incompressible at all points, but
while it may appear to correspond to an irrotational source-dipole it is in fact not irrotational at
the origin.

The fluid motion due to a single isolated sphere of radius «, placed at the origin and moving at
velocity V without rotation in otherwise still fluid, is represented by a combination of a point force
and a degenerate force quadrupole

F, = 6rapV, (20)

Fy = (a*/6)Fd). (21)
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The fluid velocity and pressure (after a minor correction) as given by Saffman (1973) are

1 a? a’
u;, = %(511/}’ —l—x,-xj/r3)F}- + 247'CMP{5U/F3 — 3x,-xj/r5}1:} — ﬂé(X)E, (22)
1 5o a0
P—E(xiﬁ/’”)‘FgEa—xﬁ(X)- (23)

The velocity on the sphere’s surface, » = a, is then identically equal to V with these two terms. Of
the contributions to the pressure in (23), the first term is F-Vg associated with the force
monopole, the second is due to the degenerate force quadrupole. In general the strict force
multipole method (10) requires a moment of degree two higher than the force, torque or other
specified term to satisfy such boundary conditions.

2.2. Finite force multipole

Once the singular Dirac delta functions é(x — Y) in (10) are replaced by the finite, localized
force envelopes 4(x — Y) the procedures are in fact significantly simpler. All flow variables remain
finite and nonsingular, and may be dealt with by standard methods. The Gaussian function (9) is
chosen for convenience and from it analytical results can be derived for the various flow com-
ponents. The key elements are again to obtain the corresponding fundamental solution for La-
place’s equation and the Oseen operator for the flow induced by a localized force monopole.
Corresponding to (12) the solution to

V3G = A(x) (24)

depends only on the radial distance r from the origin. In terms of a Fourier transform

G(k) = (21)°? / G(x)e** dx, (25)
the solution to (24) is

—K*G(k) = (2n) " exp(—k>?/2). (26)
On the assumption that G(r) tends to zero at large distances,

1 r

and

dG _ 1 r 12 }"2

- o)t en (5]

Clearly for larger values of /o the values of G and dG/dr match the point representation g and
dg/dr. At r = 0 the values are finite with dG/dr equal to zero and

G(0) = —(2n) 6. (29)

For any sphere of some given radius, centered at the origin, the net radial flux VG across the
surface matches the volume integral of the source strength 4(x) contained within the sphere.
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The flow induced by a force monopole of strength F at the origin satisfies

0=—Vp+ uViua+FA(x). (30)
As a Fourier transform the resulting incompressible flow is

i; = (uk?) "' [0y — kik; /2] (2m) e K2R, (31)
so that the corresponding Oseen operator S;;, where u; = S;;F;, has the corresponding Fourier
transform

A 1 23 22

Sy :W[aﬁ — ik /KA (2m) e, (32)

This tensor has an isotropic dependency on the position x and may be written as
S,j :A(r)élj—{—B(r)x,xj (33)

Two conditions make it possible to determine the scalar functions 4 and B without detailed
calculations. The ﬁrs} is that the trace of S;;, equal to (34 + r*B) must match the trace of S;; which
is equal to 2(uk?) ' A(k) and so

2

34 +1rB=— p G(r). (34)
The second is that the divergence of S;; is zero and so the derivatives 4’, B are related by

A +7rB +4B=0. (35)
From these two conditions and the fact that neither A or B are singular at the origin

PB(r) = / £G (s)ds (36)

K Jo

and hence

B(r) = %ﬂ [(1 — 3% /r)erf (r/a\/i) + (60/1/)(271)_1/2@*’2/2«2}’ (37)
while

A(r) = %rl 1+ /et (r/aV2) = (20/r)(2m) e 2. (38)

For large values of r/o these functions and S;; of (33), match the standard Oseen operator T;;,
while at the origin both 4 and B are finite

1 —-1/2 1 —1/2
A(0) =—(2 B(0) = 2 . 39
(0) = 5p Cr) L B0) = 5 (2m (39)
The new Oseen operator S;; is the sum of three component parts, S,:(/l) + Si(jz) + Sf,?’), with the first
1
S5 = g O 50/ et (/ov2), (40a)
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the second is

1
@ _ L o3 a5 2
Sy’ = S (0;/1" — 3xix; /1) o erf(r/a\/i), (40b)
and the third is
2 2
(N R - Ay )
S = =5, 0y = Inexr (%) 4. (40c)

For distances /o large enough that erf (r/ 0\/5) is approximately one the first two components
S 8@ correspond, respectively, to a standard Oseen tensor for a point force at the origin and a
standard degenerate force quadrupole. Some combination of this form is to be expected with the
spherically symmetric, finite but localized distribution of the forcing in the flow.

One effect of the force monopole is to generate an axisymmetric vorticity field which satisfies a
Poisson equation

Vo = —V x (FA(x)). (41)
This vorticity is found from the transform of (41) and the fundamental solution G(r) as

1 F
o=——FxVG=- <X
It wr
At the origin this vorticity is zero, as it is along the axis parallel to F, and once /o is large enough
that erf (r / a\/z) is nearly equal to unity the vorticity field is the same as that generated by a point
force of the same strength. Finally the pressure field associated with the force monopole is simply

p=F-VG. (43)

With these basic results one may then derive the flow induced by higher order force multipoles by
differentiation of the modified Oseen operator S;; or by algebraic manipulation of the Fourier
transforms. An arbitrary uniform flow or a flow with a uniform velocity gradient may be added to
any Stokes flow satisfying (30) without changing the balance of terms in (30). A standard as-
sumption or normalization is used here that all flows induced by the force monopoles at the origin
decrease to zero at large distances. Due to its significance for the motion of an isolated spherical
particle it is of value to examine briefly the flow response to a degenerate force quadrupole as
represented by the localized force envelope.

As with (18) the force quadrupole is H;0; and the flow is determined from the multipole ex-
pansion (10) except that the Dirac delta function is replaced by 4(x). The Fourier transform for
the incompressible flow response is

i = = [0y = bk R A1) (44

G (r). (42)

Again, as for the singular multipole (18), this flow is not irrotational. The vorticity associated

with this flow is ((1/p)H x V)4(x) and the flow field itself is given by the inverse of the trans-

form (44),

1 2 1
I 0°G

——HA (45)

e ﬁ / ox;0x; p
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or in explicit form

g () 30+ (22) .

The degenerate force quadrupole produces a pressure distribution

=(H-V)4(x). (47)
These results may be compared with the corresponding expressions given previously for the
singular multipole expansion. The underlying pattern is the same, though now the physical
variables remain finite and vary continuously. The flow (46) for the force quadrupole is equivalent

to a potential flow, source-dipole in its influence at locations away from the origin and diminishes
as O(r~3). At the origin the fluid velocity is

2 2m) () 'R (48)

Unlike the modified Oseen tensor (40a)—(40c), which has both a Stokeslet and a force quadrupole
type of response, there is no other long-range influence of this flow.

A final comment is needed about the overall force balance in a Stokes flow generated by a force
monopole as in (30). No other force multipole term produces a resultant net force on the flow yet
an integral of (30) over some large volume shows that the resultant force F must be balanced by
the fluid stresses summed over the bounding volume surface. Equivalently the Fourier transform
of (30) shows that there is an imbalance of the terms at zero wavenumber since both the pressure
and the viscous term vanish at zero wavenumber while the force term is nonzero. One possibility
might be to impose a mean, uniform pressure gradient to balance the resultant force and this
normalization will be adopted for the later discussion of periodic systems of particles. For an
isolated particle in a fluid of ““infinite” extent this is not feasible. The balance must come either
from stresses on a bounding container wall or else from a low, but nonzero Reynolds number
inertial correction to the far field flow dynamics.

3. Multipole expansion for an isolated particle

The results for the finite force multipoles may be used in several different ways. First we will
consider the balance of localized force distributions needed to exactly represent the flow past an
isolated sphere of radius ¢ moving with velocity V relative to the surrounding fluid. To achieve
this the length scale ¢ specifying the width of the force envelope must be small enough that the
force distributions be completely contained within the interior of the particle. For a rigid particle
moving in still fluid there is no tendency for the particle to rotate, so Q = 0, and the no-slip
boundary condition (7) is that the fluid velocity u equals V at all points on the spherical surface.
The force of the particle on the fluid F is given by (20) as the usual Stokes drag force and the flow
will be represented as a combination of a force monopole (Stokeslet) (33) and a degenerate force
quadrupole (45),

SiiF; ! H rG ! H;A 49
( ) +- J a axj u ! ( )

with the particle centered at the origin.
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The required value of H depends on the value of a/o specified. The Stokeslet contribution S
of (40a) matches the usual results provided erf (r/ cv/2) is approximately one, and we may note
that erf(x) has the value 0.995 for x = 2 converging rapidly thereafter as x increases. If the as-
ymptotic form of (49) for /o > 1 is compared with the standard form (22) for the induced flow,
the two match provided the force quadrupole term H satisfies

2 2 1

a o
—F+—H. 50
247u 877:,u + 4ru (50)

This condition to determine H will ensure that at least away from the sphere the flow is correctly
represented. If (a/o) > 1, then the force quadrupole strength H;0; is the same as (21) for the
standard, singular force multipole. In general though H is given by

H = nuV(a® — 3ad?). (51)
With F and H thus specified the fluid velocity on the surface of the spherical particle at » = a is

w=vert (25 ) 0 () (1-5(2)) (00 Y exn (- @/20). (52)

The first term approximates V to better than 1% accuracy if (¢/¢) is equal to 21/2 or greater. The
second term, although rapidly decaying as a/o increases is still significant at this value. For
ajo > (2.5V2) the discrepancy between u and V on the particle surface is less than 1.5% and
negligible for a/c > 3v/2. If axes are chosen so that V = (¥,0,0), then the fluid velocity com-
ponent u#; may be evaluated along the streamwise and transverse axes Ox; and Ox,. These are
plotted in Fig. 1 for different values of a/o with H specified by (51). These results show that the
fluid velocities are accurately represented away from the sphere surface with the accuracy in the
near region improving as a/o is increased. With a/o = 4.0 the vorticity contours and streamlines

1.4 14
13k 13F
s . 12F--
11F Eo
I 1o o
Ui ess 0.9 %—
5 09f 5 osF
sl 07fF
07 3 06F
g 05fF
0.6 F
= 04
05 03f
= e 1 E [T NI [N NN TN NN NN [N NN TR T N AN M SR . |
0 1 15 2 25 02 1 15 2 25
(a) Xy (b) Xy

Fig. 1. Profiles of u; fluid velocity component along x;-axis and x,-axis for an isolated sphere of unit radius moving
with unit velocity (¥ = 1) in positive x,-direction as represented by finite force multipole result (52): (...... )ajo=2;
(----)ajo=3;( ) a/o = 4; and (O) Stokes flow result for a rigid sphere.
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for the flow relative to the sphere given by this multipole expansion (49) are indistinguishable
from the exact flow outside the sphere. The maximum surface vorticity is 1.5 ¥'/a, which occurs as
expected in the mid-plane x; = 0.

This approach may be applied to other flow conditions such as the motion of sphere relative to
a uniform shear flow or a flow with uniform strain-rate. In the former the sphere will rotate so
that the angular velocity corresponds to the imposed uniform vorticity. No net torque will act on
the particle since particle inertia is considered negligible, and the force dipole coefficients F; will be
symmetric. For either situation a stresslet flow is induced, while a combination of a symmetric
force dipole and a degenerate force octapole will be required to match the no-slip boundary
conditions on the particle. The exact correspondence between these two terms will again depend
on the value of the ratio a/g.

Clearly an accurate flow representation may be constructed through a suitable combination of
these finite force multipoles for Stokes flow conditions once the particle velocity is specified and
the boundary condition (7) is set. Systems of particles can be represented too following the
analogous steps for standard multipole methods, see for example Brady and Bossis (1988) or
Ladd (1993). If a cluster of particles is settling under gravity the external force on each particle is
known and hence the strength of the force monopole term. The velocity and angular velocity of
each particle in this mobility problem is determined from the flow induced by the particle motion.
Force dipoles and higher-order multipoles are included as necessary to satisfy the conditions of a
rigid body motion on the surface of each particle. The particle velocity is evaluated as a simple
average of the fluid velocity on the particle surface, or some equivalent procedure. These issues are
illustrated further in Section 5.

4. Force-coupling model

The primary focus of this paper is not to use the finite force multipoles to reproduce standard
multipole solutions but rather to develop the force-coupling model (1)—(4), described briefly in the
introduction, within the context of Stokes flow. The flow induced by a single moving particle or
system of particles is represented approximately by retaining only the force monopole term. For
spherical particles settling under gravity with no external torques the force on each particle is
known and this then sets the strength of the force monopole for each particle. The issue to be
resolved then is how to determine the particle velocity since the boundary conditions (7) are no
longer accurately matched on the surface of each particle. A common procedure for evaluating the
particle velocity V(¢) in a dilute suspension by standard particle tracking methods (Maxey and
Riley, 1983) is to assign

V=u(Y,)+W, (53)

where W is the Stokes settling velocity of the particle. In a Stokes suspension where the flow is
represented by a singular multipole expansion (10) or point-force model (8) the value of u(Y,¢)
must be calculated from the sum of the disturbance flows of each individual particle excluding the
particle under consideration. This is done to avoid the infinite, self-induced fluid velocity that
would result from the Stokeslet or other multipoles associated with the individual particle.
A similar procedure is used by Batchelor (1972) where (53) is modified to include the Faxen
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correction for the variation in the ambient flow. In contrast the finite force multipoles produce no
such singularities and even at the particle center, inside the volume of fluid nominally occupied by
the particle, the value of u(Y, ¢) remains finite. In addition the envelope scale ¢ is available as an
extra parameter that may be chosen to meet specific requirements.

Consider first the motion of a single isolated particle settling under gravity in otherwise still
fluid. The particle velocity V is simply the Stokes settling velocity for this particle W. The induced
disturbance flow as represented approximately by a single force monopole is

u;(x, 1) = 6nauS;(x — Y (1)) W, (54)

where the force monopole F and W are related by the usual Stokes law (20). Evaluated at Y(¢), the
fluid velocity calculated from (33) and (39) is

w(Y, 1) = (3) <g>1/2W1—. (55)

g Y

The same result can also be obtained by direct integration of the Fourier transform #; in (31).
From (55) it is clear that if the envelope scale ¢ is chosen in relation to the particle radius such that

ajo = (n/2)"?, (56)

or approximately 1.25, then the self-induced fluid velocity at the particle’s center exactly matches
the Stokes settling velocity W. To the same level of approximation then the particle tracking
equation is simply

V(t) = u(Y, ). (57)

Provided a/o is set according to (56) there is no need to calculate separately the ambient flow
generated by the settling of the other particles, a direct calculation of u(Y, ) suffices. In one step
this eliminates the potential difficulty of the self-induced particle velocity and simplifies the cal-
culations.

The results of the previous section have shown that as larger values of a/c are selected the
multipole representation for the flow due to a single particle is more accurate, especially in the
region near the particle. As a counterpart to the results of Fig. 1 we show in Fig. 2 a comparison
of the approximate fluid velocity for the disturbance flow as represented by (54) with the exact
values for Stokes flow past a sphere. The correspondence is quite acceptable for »/a > 3 and
suggests that this procedure for calculating particle velocity will be useful provided the particles
remain reasonably well separated. Results for simple systems of particles based on this particle-
tracking equation (57) are given by Patel (1996).

An alternative procedure is to recognize that the particles have a finite size and that they move
in response to the local average fluid velocity, integrated over the particle volume. There is some
arbitrariness as to how this is accomplished but a preferred choice is to define an average in terms
of the envelope 4(x — Y(¢)) itself,

u(Y, 1) = / u(x, ) 4(x — Y(¢)) d’x. (58)

This locally spatially averaged, or filtered, velocity has several physically valuable properties as
previously noted by Maxey et al. (1997). In terms of u the particle tracking procedure is to
evaluate the particle velocity as
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Fig. 2. Profiles of u; fluid velocity component along x;-axis and x,-axis for an isolated sphere of unit radius moving
with unit velocity (¥ = 1) in positive x,-direction as given by single force monopole result (54): (...... )a/o = (n/2)0'5;
(----) a/o = n°%; and (——) Stokes flow result for a rigid sphere.

V(1) = u(Y, 1) (59)
with the scale ratio a/o set instead as

alo=+/n. (60)

As with the point velocity procedure (57) the value of u(Y, ) due to a single force monopole (54) is
then exactly matched to the Stokes settling velocity W. A comparison of the profiles for the
streamwise fluid velocity component for this second value of the scale ratio (60) is also shown in
Fig. 2, again for the disturbance flow due to the force monopole (54). In general the corre-
spondence with the exact Stokes flow is much closer than shown for a/a given by (56).

The choice of u(Y,¢) as defined by (58) is motivated by considering the special context of an
envelope A'(x) defined, for a particle centered at the origin, as

A'(x)=1/Q, [x|<a
=0 x| > a, (61)

where Q, is the volume of the particle 4ra® /3. The indicator function y(x) for the particle is then
Q,4'. If the fluid velocity satisfies the exact boundary conditions (7) on the particle surface and the
flow remains incompressible in the region nominally occupied by the particle then the surface
integral over the particle surface S,

% X,’Mjl’lde = Vj% Xin; dS, (62)
Sp Sp

which is equal to ©,¥;. The same surface integral may be written, by an application of Gauss’
Theorem as an integral over the volume of the particle with the result that
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and then (59) holds as an exact relationship. More generally the convolution integral (58), defined
with 4(x), is a smoothly varying spatial filter that approximates the particle’s presence.

The main reason to select u is that a consistent energy balance may be established between the
release of potential energy as a particle settles out under gravity and the viscous dissipation in the
fluid. The scalar product between the fluid velocity and the equation of motion (30) for the flow
induced by a single finite force monopole may be integrated over the whole region to give

6ui 6ui au] 3 ~
&x=F-i. 64
/Mﬁx_/(ax/‘Jraxi) ) ' e

The integral term is the complete viscous dissipation in the fluid summed over all points including
the fluid volume nominally occupied by the particle. The term on the right is equal to the rate of
working by the particle on the fluid provided V = u. In the region close to the particle, the flow
field, as represented by (54), is not fully resolved and for example does not satisfy the no-slip
boundary conditions. Further the rate of strain is less than in the exact flow which results in a
mismatch in the local viscous dissipation. Away from the particle surface the mismatch becomes
negligible. All of this is consistent with the spatial filtering associated with the finite force
monopole representation at the value of a/o = /n. To obtain a consistent estimate of the viscous
dissipation within the spherical region » < R this must be integrated over 0 < » < R and not
a < r < R as would be done for an exact, fully resolved disturbance flow.

The flow structure corresponding to this choice of a/o and generated by the approximate force
monopole representation (54) is shown in Fig. 3. The vorticity contours have the usual general
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Fig. 3. Vorticity contours and steamlines calculated from the approximate single force monopole result (54) with
a/o = n°3. Vorticity contours are shown for w; = 0 and w; = +0.1 (outermost), +0.25, 0.5, £0.75, £1.0 (innermost).
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structure and closely match those of the exact flow at points away from the particle surface. The
strength of the fluid vorticity near the surface is attenuated, as noted above, and the innermost
vorticity contours correspond only to w; = +1.0/ /a. The peak vorticity on the surface » = a is
significantly less than the expected value of 1.5 /a. The streamlines show clearly the presence of a
material surface somewhat larger in radius than the actual sphere though this is not a no-slip
surface for the fluid motion. There is an internal circulation within this spherical region that is
similar to a Hill’s spherical vortex. The open streamlines in Fig. 3 are identical to those of the
exact flow except for the innermost pair in a small interval about x; = 0, near to the spherical
boundary.

Some other features are worth noting about the choice of the ratio of the particle radius to the
envelope scale o. For a single isolated sphere sedimenting in otherwise still fluid the required force
quadrupole strength H is zero if /o = /3 as specified by (51). The force monopole alone is then
sufficient to generate the correct disturbance flow outside the immediate region surrounding the
particle. For a/a = /= the value of H that would be appropriate is still small and this is evident in
the better correspondence of the fluid velocity shown in Fig. 2. Another issue to consider with the
approximate particle tracking methods such as (57) or (59) is the Faxen correction to the Stokes
drag law. If an otherwise isolated particle is settling in the presence of some ambient nonuniform
flow that is approximated by

ou” 18U
(l]iw)—f— 6)2 X+ = — XX |,
J

then the particle velocity V is modified and
2
V=W+U ¢ % VAU, (65)

(See for example Happel and Brenner, 1973.) The local velocity gradient 6[],-(0) /0x; has no net
effect on the fluid force acting on the particle while the quadratic variation modifies the particle
response. Under these condition the estimate of V provided by u as in (59) is

1
V=W+U"+ 3 vl O (66)

The two expressions match if /o = v/3, and agree approximately if a/o = /7.

5. Systems of particles
5.1. Particles in a cubic lattice

The two methods based on the finite force multipoles, either the full expansion or the ap-
proximate force coupling model with only the force monopole term, are first applied to the
standard problem of sedimentation for particles arranged in a simple, periodic cubic lattice. The
distance between adjacent particles is L and the volume fraction ¢ of the particles is then

c =d4na’ /3L°. (67)
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The particles are settling under the net force of gravity through the surrounding fluid while
maintaining the cubic lattice configuration. For a Stokes flow there is no tendency for the particles
to migrate out of this configuration. In isolation the particle velocity V equals W, the Stokes
settling velocity, which is related to the net force F”’ due to gravity by (20). The system is
maintained in equilibrium at finite volume fractions by a uniform pressure gradient that balances
the net weight of the particles per unit volume. The equivalent effect is to impose a constraint of
no net volume flux; the volume displacement associated with the settling of the rigid spherical
particles is counterbalanced by a return flow in the surrounding fluid. The results on the change in
relative settling velocity ¥ /W with changes in volume fraction are specified in this frame of ref-
erence of no net volume flux. Alternatively the particles may be viewed as a fixed bed subject to an
applied pressure gradient and then the value of V is the superficial velocity for the flow through
the bed.

Hasimoto (1959) showed that at lower particle concentrations the settling velocity varies linear
with the ratio of particle size to inter-particle spacing. He obtained the approximate result for the
variation of ¥ /W with concentration c,

V/W=1-1.7601c"?+c—1.5593 *+ O(c*?). (68)

Hasimoto found the flow generated by a fundamental point force in the periodic geometry and
used an Ewald summation of the periodic images to obtain this result. This approach was ex-
tended by Sangani and Acrivos (1982) to obtain a more accurate estimate for the variation in
V /W as well as a complete summation of the multipole expansion. They give accurate results for
this variation up to the close-packing limit of ¢ = n/6. Their results are in agreement with the
calculations of Zick and Homsey (1982) who used a boundary element method for the same
problem. In Fig. 4 the results of Sangani and Acrivos (1982) are compared with the results for the
approximate force monopole representation (54). The flow for the periodic array of finite force
multipoles is computed by fast Fourier transform methods explicitly using the periodic length
scale L and a Fourier series expansion for the flow variables. Results are shown for both the point
value estimate of V (57) with a/c given by (56) and the local volume-averaged estimate (59) that
uses u and a/o specified by (60).

The approximate force monopole representation is in good agreement with the exact values up
to values of ¢!/3 equal to 0.6, or roughly ¢ < 0.2. The data for higher concentrations are plotted
again in Fig. 4 on an expanded scale. Even at the close packing limit the discrepancy is not large in
absolute terms, approximately 0.044 compared to the correct value of 0.024. An initially sur-
prising feature is that the approximate results for V/W are the same whether one uses u(Y,¢) or
u(Y,?) to calculate V, provided the ratio a/c is set appropriately. A feature of the Gaussian
function (9) used here for 4(x —Y) is that evaluating u is equivalent to evaluating u for the same
force monopole but with ¢ replaced by 2¢%. Result (55) for the induced velocity u(Y,¢) of an
isolated particle is proportional to (a/a). Even in the periodic cubic lattice the linearity of the
Stokes flow problem implies a self-similarity scaling for the dependency of ¥ /W on the combi-
nation (a/c)(a/L), which is proportional to c¢!/3.

A better understanding of the processes involved can be obtained by looking at the flow
structure of a specific example. Fig. 5 shows the vorticity contours and streamlines in a symmetry
plane for particles settling in the positive x;-direction. The distance L between particles is scaled to
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Fig. 4. Change in sedimentation velocity V' of particles in a fixed simple cubic lattice as volume fraction ¢ varies, V'
scaled by Stokes settling velocity W against c¢!/*: (——) results of Sangani and Acrivos (1982);

(O),a/a = n"%;(4),a/o = (1/2)".

be L = 2 and the corresponding particle radius is 0.375 so that ¢'/3 is 0.302. The flow is calculated
from the finite force multipole expansion

EYAX) + HV?A(x) + F)0? jad A(x), (69)

1

where F® = (F© 0,0), H= (H,0,0) and F) = (F;,0,0). Again the flow variables are ex-
pressed as Fourier series for the periodic array and evaluated by fast Fourier transforms. The
force multipoles in (69) consist, of the usual force monopole, set by the net weight of the particle,
and a degenerate force quadrupole with an additional force quadrupole term required to satisfy
the flow boundary conditions on the particle surface. An extra term equivalent to a potential flow
source-octapole or a degenerate force hexadecapole is also required to complete the balance of the
flow boundary conditions. These terms were sufficient to ensure all boundary conditions were
satisfied to an accuracy of 0.5% or better.

The vorticity contours of Fig. 5 show the internal flow structure associated with the force
monopole and force quadrupole. Outside the sphere, shown by the dashed circle, the vorticity
contours scaled by W /a are similar to those of an isolated sphere except they are somewhat
compressed and confined by the periodic cell structure. The contours for w; = +1.5W /a ap-
proximately meet the sphere surface along the symmetry line x; = 0. Indeed the maximum value
for the surface vorticity is 1.538% /a, not significantly different from the value of 1.5 /a for an
isolated sphere settling with velocity W. This was found to be true for other concentration levels
examined. The streamlines, drawn relative to the motion of the particle, show the flow around the
material boundary of the sphere. The value of the required degenerate force quadrupole H ex-
hibits a similar lack of sensitivity to the volume fraction. The relation (51) for H, with V set equal



1620 M.R. Maxey, B.K. Patel | International Journal of Multiphase Flow 27 (2001) 1603-1626

1

M
-0.75

-0.75

X
. o
el DLULLALE LB INLALULELN LA LA NN LN NN NLNNNRER A BUERERENA |

1
-0.5 0 0.5 1

(@) X (b) X,

£

Fig. 5. Vorticity contours and streamlines for a particle in a simple cubic lattice array, calculated with finite force
multipoles, shown in a symmetry plane, for « = 0.375. Vorticity contours shown for @w; = £0.1 (outermost), +0.25,
+0.75, £1.0, £1.25 and +1.5/ /a (inner set). Sphere is shown by the dashed circle.

to W, provides a good estimate of the required value. In Table 1 values are listed for the coef-
ficients H and F};; in a few example cases as c¢!/3 increases up to 0.6. In all cases the flow boundary
conditions are satisfied to 0.5% or better except in the last example where (69) proved to be in-
sufficient. The errors in u#; and u, on the sphere in this case were +0.01 W relative to a value of
V/W =0.131.

The flow structure generated by the approximate force monopole representation for the same
conditions as in Fig. 5, with ¢ = 0.375 and L = 2, is shown in Fig. 6. The flow is matched with
V =1 and using (59), (60). The outer vorticity contours for w; = +0.1 and £0.25W /a match
closely between the two sets of figures. The approximate representation has a significantly at-
tenuated vorticity. The innermost pair of contours correspond to w; = +0.9% /a and the maxi-
mum surface vorticity at » =a is only 0.9%W /a. This is consistent with the spatial filtering
associated with the model and the limited resolution near the particle surface. The streamlines of
Fig. 6 indicate as with Fig. 3 the presence of a material surface somewhat larger in size than the

Table 1

Finite force multipole coefficients for spherical particles in a simple cubic lattice®
a/L cl? /4 H H (expected) Fiu/H
0.125 0.202 0.651 1.25 1.24 —0.046
0.1875 0.302 0.495 4.77 4.71 —-0.124
0.25 0.403 0.352 11.2 10.9 —-0.266
0.3125 0.504 0.229 22.7 22.2 —-0.406
0.375 0.605 0.131 37.9 37.7 —-0.559

#The expected values of H are calculated from (51) with ¥ set equal to W. The ratio a/o varied between 4.0 and 8.0,
viscosity u = 1.0.
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Fig. 6. Vorticity contours and streamlines, similar to Fig. 5, for a = 0.375, calculated with simple force monopole and
a/c = n%3. Vorticity contours shown for w3 = 0.1 (outermost), £0.25, 0.5, £0.75, +0.9% /a ( innermost).

actual sphere. The outer streamlines match quite closely between Figs. 5 and 6 but differ no-
ticeably close to the sphere surface.

5.2. Particle pair

A second example to consider is the motion of a pair of identical, spherical particles settling
under gravity. If the particles are otherwise isolated and not influenced by other particles or
boundaries, they will have equal settling velocities due to the symmetry of the induced Stokes
flow. The mutual influence of the disturbance flow created by each particle leads to a settling
velocity larger than that for a single isolated particle. As pointed out by Batchelor (1972) the
settling velocity depends on the separation between the particles and the orientation of the line of
centers to the vertical. These results are completely specified once the settling velocities are de-
termined for two standard configurations, two spheres falling vertically parallel to the line of
centers or two spheres with a horizontal separation. In both instances the particles settle vertically
though this is not the case for other alignments.

The approximate, force coupling model has been used to evaluate the settling velocity of two
equal spheres in these two configurations with the particle velocities evaluated by (59). The results
are shown in Fig. 7. The settling velocity V is scaled as previously by the Stokes velocity W and
given in terms of the distance between the centers, so r/a = 2 corresponds to touching spheres.
The results are compared with the theoretical values quoted by Batchelor (1972) and Batchelor
(1976). For larger particle separations the force coupling model gives good agreement with the
exact results. The discrepancy is more noticeable for particles falling vertically along the line of
centers. For two spheres in contact the force coupling model overestimates the settling velocity
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Fig. 7. Settling velocity of ¥ of a pair of identical particles against particle separation distance r: ( ) force-coupling
model for vertical alignment; (- - - -) force-coupling model for horizontal alignment, () and (0), corresponding results
from Batchelor (1972, 1976).

giving a value of ¥ /W equal to 1.633 compared to the correct value of 1.550, an error in absolute
terms of 5%. At r/a = 3 the error is about 2%. These errors are due to the neglect of the higher-
order multipole terms and are consistent with the values found by Ladd (1988) for lower-order
multipole representations. Lubrication forces are not a factor in this example but do affect the
motion of spheres settling with a horizontal separation.

For spheres with a horizontal separation the results of the force coupling model are in closer
agreement with the exact results. At /a = 2.1 the force coupling model gives V' /W equal to 1.402
compared to the exact result of 1.392, an error of less than 1%. Lubrication forces have a strong
modifying effect on the exact results between r/a = 2.01 and 2.0 which the model as given will not
reproduce. In general there is no external torque on the particles and they are free to rotate in
response to the local fluid velocity. The no-slip condition between the spheres prevents the ro-
tation of the spheres at or near contact leading to a sharp, local change in settling velocity with
V/W =1.380 at r/a = 2. For particle suspensions at low to moderate concentrations these dis-
crepancies are not critical.

5.3. Random suspension

The third example that illustrates the force coupling model is the application to dilute, random
suspensions. Spherical particles, of equal size and weight, are seeded at random locations within a
periodic domain such that none of the particles overlap. This statistically uniform array of par-
ticles then induces a Stokes flow and the velocity of each particle is evaluated from the locally
averaged flow by (4). Each particle contributes to the force distribution (3) acting on the fluid with
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F™ equal to the net weight of the particle under gravity, taking into account any buoyancy. The
equation for Stokes flow

0=—Vp+uViu+1f(x,t) (70)

together with (2) and (3) are written in terms of a Fourier series for a periodic domain of side L.
The Fourier representation naturally incorporates the periodic boundary conditions and as with
the example of the cubic lattice array there is no need to use an Ewald summation. For this
example there was no flow evolution. For a given set of conditions, different random distribution
of particles were generated to give a sample of 25 or 40 different flow fields which were then used
to evaluate average settling velocities or fluctuation levels for the particle velocities. The sus-
pension is supported by a mean pressure gradient that balances the combined force of the particles
in the periodic domain. This leads to the standard normalization that there is no net volume flux
in the system, the volume flux of the particles settling is countered by an equal and opposite
volume flux in the fluid.

Fig. 8 shows the first set of results obtained on a mesh of 64° grid points and scale ratio of
domain size to particle radius L/a = 24. These data cover the range of concentrations 0 to 15%
with ¢ = 6% correponding to a flow seeded with 200 particles. At a nominal concentration of 0%
the flow consists of a single particle in a periodic array, discussed earlier in this section, and the
average settling velocity (V) /W is 0.883. As the concentration increases there is an initial, almost
linear decrease in (V). Following standard practice, see for example Ladd (1993), we may com-
pare (V) to standard empirical correlations such as Richardson and Zaki (1954) by scaling the
average settling velocity by the value at zero concentration ;. Fig. 8 shows a comparison of the
simulation results with the correlation
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Fig. 8. Results of force-coupling model for average settling velocity (V) and mean square particle velocity fluctuations
(V) against concentration ¢: O, (V)/W; (O), (V?)/W?; (----) empirical correlation (71). Domain size L/a = 24.
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(V)y=nl-c). (71)

There is resonable agreement and these results are consistent with experimental data such as
Nicolai et al. (1995). An exponent value of 5 also yields reasonable agreement over this range.

Fig. 9 shows a second set of results obtained on a larger mesh of 128° grid points and the scale
ratio L/a is now 48. At the nominally zero concentration level (V)/W = 0.941. The same cor-
relation (71) for the average settling velocity again gives a reasonable match with the simulation
data.

The mean square particle velocity fluctuations are dominated by the vertical components.
Results for these are shown too in Figs. 8 and 9 with (V?) scaled by W?. In the smaller domain the
fluctuations are greatest around a particle concentration of 10% at a level of about 0.44, while in
the larger domain shown in Fig. 9 the peak is about 0.85. The fluctuation levels at ¢ = 6% are 0.36
and 0.72, respectively. This dependence of the fluctuation levels on the container size, or domain
size, was demonstrated by Caflisch and Luke (1985) for simple uniform distributions of particles
and is due to the long-range effect of the Stokes flow interactions between particles. The present,
almost linear variation in fluctuation levels with L/a agrees with their theory. Experiments such as
Nicolai et al. (1995) consistently report fluctuation levels that do not increase with container size.
A number of studies and additional experiments have been carried out to determine what factors
may limit the particle velocity fluctuation levels in a dynamically evolving suspension. Koch and
Shagfeh (1991) proposed a screening mechanism as one hypothesis. The recent paper by Luke
(2000) summarizes the conclusions to date and in addition to possible long-range correlations in
the distribution of particles proposes that stable stratification within a sedimenting suspension will
have a significant effect.
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Fig. 9. Results of force-coupling model for average settling velocity (V) and mean square particle velocity fluctuations
(V') against concentration ¢: O, (V)/W; (D), (V'*)/W?; (----) empirical correlation (71). Domain size L/a = 48.
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6. Conclusion

The preceding sections illustrate how a finite force multipole expansion may be used to tackle
problems in Stokes suspensions. From a computational viewpoint the finite values of all the
variables and the lack of singularities mean that standard numerical methods such as fast Fourier
transforms can be applied to systems involving periodic boundary conditions. More significant
though is the relative ease of implementing the approximate force-coupling model involving just
force monopoles. The results for the periodic cubic lattice show that quite good estimates can be
obtained for overall quantities such as the sedimentation velocity even though the flow structure
near an individual particle is only partially resolved. In this context these results are the same as
those obtained from the Stokesian dynamics method, Brady and Bossis (1988). It is essential to
account correctly for the self-induced motion of a particle and match this to the Stokes settling
velocity. This is achieved by matching the particle radius to the length scale of the finite force
envelope A(x —Y). Once this is done consistent results can be obtained for the particle tracking
and flow coupling problems that are inherent to all dispersed two-phase flow systems. Consistent
energy budgets can be obtained too.

The methods described here have more general application. An example application to motion
at nonzero particle Reynolds numbers is given by Dent and Maxey (2000). Indeed a major mo-
tivation of this work has been the potential use for systems of particles with low to moderate
particle Reynolds numbers involving possibly unsteady flow conditions. Further results are given
by Dent (1999) and Lombholt (2000).
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